LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2023
UMT 4601 - COMBINATORICS

Date: 06-05-2023
Time: 09:00 AM - 12:00 NOON

SECTION A - K1 (CO1)

Answer ALL the Questions

1. Answer the following
a) Define generating function.
b) There are five seats in a row available, but 12 people to choose from. How many different seating's are possible?
c) 10 people meet and form 5 pairs. In how many ways their pairs can obtain?
d) When a path or trial is said to be closed?
e) Write the rook polynomial of an 2×2 board.
2. Fill in the blanks
a) If $a_{n}=a_{n-1}+n$. If $a_{1}=0$. Then $a_{n}=$
b) $(1+x)^{3}=$
c) A beats B, A beats C, B beats C, D beats A, B beats D, D beats C, The score sequence of this game is
d) A connected graph with no cycles is called
e) If a $n \times m$ board has the _, then it is said to have a forbidden position SECTION A - K2 (CO1)

Answer ALL the Questions

($10 \times 1=$
10)
3. MCQ
a) $f(4,2)=$ \qquad .
(a) 10
(b) 11
(c) 12
(d) 13
b) ___ number of necklaces can be designed from n colours, using one bead of each colour.
(a) $\frac{1}{2} n$!
(b) $\frac{1}{2}(n-1)$!
(c) $(n-1)$!
(d) $\frac{1}{6}(n-1)$!
c) The derangement of 123 is \qquad
(a) $1 \quad 2 \quad 1$
(b) $3 \quad 2 \quad 2$
(c) $2 \quad 3 \quad 1$
(d) 122
d) The number of edges in a walk is called
(a) length of the walk
(b) identical walk
(c) non-identical walk
(d) None
e) $A=\{1,2,3\}$ and $B=\{2,3,4\}$; Then $|A \cup B|=$ \qquad .
(a) 1
(b) 2
(c) 3
(d) 4

4. True or False

a) An equation that defines recursively a sequence with one or more boundary conditions are said to be a recurrence relation.
b) In 12 tone music, the 12 notes of the chromatic scale are put in a row, and then there are 12 ! Number of possible rows which have to be played in that particular order
c) In a graph, root of the tree is the ending vertex of the tree.
d) The derangement is a rearrangement or permutation such that no number appears in its original position.

SECTION B - K3 (CO2)

Answer any TWO of the following in 100 words
$(2 \times 10=$
20)
5. Suppose that $t(n, n-1)=1$ and $(n-k-1) t(n, k)=k(n-1) t(n, k+1)$ for each $k<$ $n-1$. Show that $t(n, k)=\frac{(n-1)^{n-k-1}(n-2)!}{(k-1)!(n-k-1)!}$.
6. \quad Show that $\binom{8}{3}=\binom{8}{5}$ and $\binom{n}{n-2}=\binom{n}{2}=\frac{1}{2} n(n-1)$.
7. Use generating function, to find the recurrence relation of $a_{n}=4 a_{n-1}+4 a_{n-2}-164 a_{n-3}$ with the given boundary conditions $a_{1}=8, a_{2}=4, a_{3}=24$.
8. Derive $a_{n}=n!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right\}$ by using inclusion and exclusion principle.

SECTION C - K4 (CO3)

Answer any TWO of the following in 100 words
20)
9. Show that $\binom{n}{r}=\binom{n}{n-r}, 0 \leq \mathrm{r} \leq \mathrm{n}$.
10. Let S be a set of $m n$ objects. Prove that ' S ' can be split up into n sets of m elements in $\frac{(m n)!}{(m!)^{n} n!}$ different ways.
11. Derive the general formula for U_{n}, i.e., the number of different rooted trees.
12. Find the rook polynomial of the board

SECTION D - K5 (CO4)

Answer any ONE of the following in $\mathbf{2 5 0}$ words
13. (a) Suppose that each of k - indistinguishable golf balls have to be coloured with any one of n colours using binomial theorem (generating function) approach. Find out how many different colouring are possible and hence deduce the case $k=4$ and $n=9$.
(b) Solve the following Assignment Problem to find the optimal assignment schedule:

	A	B	C	D
I	5	7	15	12
II	8	3	9	10
II	4	14	2	5
IV	6	3	1	14

14. (a) State and prove Marriage Theorem.
(b) Let n be a positive integer. Show that if $(1+x)^{n}$ is expended as a sum of powers on n, the coefficient of x^{r} is $\binom{n}{r}$.

> SECTION E - K6 (CO5)

Answer any ONE of the following in $\mathbf{2 5 0}$ words
$(1 \times 20=$
15. (a) If a football league of n teams, each team plays each other twice. The number of games played is therefore 2 C . where C is the number of ways choosing two objects from n given objects. Prove
that $C=(n-1)+(n-2)+\cdots \ldots+2+1=\frac{n(n-1)}{2}$ and deduce the number of games played in a league of 22 teams.
(b) Explain ordered selection and evaluate the following: (i) $p(7,4)$, (ii) $p(9,5)$
16. (a) Suppose that a_{1} and a_{2} are given, then $a_{n}=A a_{n-1}+B a_{n-2},(n \geq 3)$, holds. Then prove the following:
(i) if the roots α, β of the equation $x^{2}=A x+B$ are distinct, then $a_{n}=k_{1} \alpha^{n}+k_{2} \beta^{n}$, where the constants k_{1}, k_{2} are determined uniquely by a_{1} and a_{2}.
(ii) if $x^{2}=A x+B$ has repeated root α, then $a_{n}=\left(k_{1}+n k_{2}\right) \alpha^{n}$
(b) Given a chessboard C, choose any square of C and let D denote the board obtained by deleting from C every square in the same row or column at the chosen square (including the chosen square itself). Let E denote the board obtained from C by deleting only the chosen square. Then prove that $R(x, C)=x R(x, D)+R(x, E)$.

