LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER – **APRIL 2023**

UMT 4601 – COMBINATORICS

Da	ate: 06-05-2023 Dept. No.	Max. : 100 Marks			
Tiı	me: 09:00 AM - 12:00 NOON				
	SECTION A - K1 (CO1)				
-	Answer ALL the Questions	(10 x 1 = 10)			
1.	Answer the following				
a)	Define generating function.				
b)	There are five seats in a row available, but 12 people to choose from. How many different seating's				
	are possible?				
c)	10 people meet and form 5 pairs. In how many ways their pairs can obtain?				
d)	When a path or trial is said to be closed?				
e)	Write the rook polynomial of an 2×2 board.				
2.	Fill in the blanks				
a)	If $a_n = a_{n-1} + n$. If $a_1 = 0$. Then $a_n = $				
b)	$(1+x)^3 =$				
c)	$(1 + x)^3 =$ A beats B, A beats C, B beats C, D beats A, B beats D, D beats C, T	he score sequence of this game			
	is				
d)	A connected graph with no cycles is called				
e)	If a $n \times m$ board has the, then it is said t	o have a forbidden position			
-	SECTION A - K2 (CO1)				
	Answer ALL the Questions (10 x 1 =				
	10)				
3.	MCQ				
a)	f(4,2) = .				
	(a) 10 (b) 11 (c) 12 (d) 13				
b)	number of necklaces can be designed from <i>n</i> colours, u	sing one bead of each colour.			
	(a) $\frac{1}{2}n!$ (b) $\frac{1}{2}(n-1)!$ (c) $(n-1)!$ (d) $\frac{1}{6}(n-1)$				
c)	The derangement of 1 $\stackrel{\circ}{_{2}}$ 2 $\stackrel{\circ}{_{2}}$ 3 is				
0)	(a) $1 \ 2 \ 1$ (b) $3 \ 2 \ 2$ (c) $2 \ 3 \ 1$ (d) $1 \ 2 \ 2$				
d)	The number of edges in a walk is called (0) 2 2 (0) 2 3 1 (0) 1 2 2				
u)	(a) length of the walk (b) identical walk (c) non-identical walk	(d) None			
e)	$A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$; Then $ A \cup B = $.				
-/	(a) 1 (b) 2 (c) 3 (d) 4				
4.	True or False				
a)	An equation that defines recursively a sequence with one or more b	oundary conditions are said to			
	be a recurrence relation.	5			
b)	In 12 tone music, the 12 notes of the chromatic scale are put in	a row, and then there are 12!			
	Number of possible rows which have to be played in that particular of				
c)	In a graph, root of the tree is the ending vertex of the tree.				
d)	The derangement is a rearrangement or permutation such that no	number appears in its original			
	position.	appears in its original			
L	r				

e)	The rook polynomial for the board \Box is 1+x.				
	SECTION B - K3 (CO2)				
	Answer any TWO of the following in 100 words $(2 \times 10 = 20)$				
5	$\frac{20}{20}$				
5.	Suppose that $t(n, n-1) = 1$ and $(n-k-1) t(n, k) = k(n-1) t(n, k+1)$ for each $k < (n-1)^{n-k-1} (n-2)!$				
	$n-1$. Show that $t(n,k) = \frac{(n-1)^{n-k-1}(n-2)!}{(k-1)!(n-k-1)!}$.				
6.	Show that $\binom{8}{3} = \binom{8}{5}$ and $\binom{n}{n-2} = \binom{n}{2} = \frac{1}{2}n(n-1)$.				
7.	Use generating function, to find the recurrence relation of $a_n = 4a_{n-1} + 4a_{n-2} - 164a_{n-3}$ with				
	the given boundary conditions $a_1 = 8$, $a_2 = 4$, $a_3 = 24$.				
8.	Derive $a_n = n! \left\{ 1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!} \right\}$ by using inclusion and exclusion principle.				
	SECTION C – K4 (CO3)				
	Answer any TWO of the following in 100 words (2 x 10 =				
	20)				
9.	Show that $\binom{n}{r} = \binom{n}{n-r}, 0 \le r \le n.$				
10.	Let S be a set of mn objects. Prove that 'S' can be split up into n sets of m elements in $\frac{(mn)!}{(m!)^n n!}$				
	different ways.				
11.	Derive the general formula for U_n , i.e., the number of different rooted trees.				
12.	Find the rook polynomial of the board				
	SECTION D – K5 (CO4)				
	Answer any ONE of the following in 250 words (1 x 20 = 20)				
13.					
	(b) Solve the following Assignment Problem to find the optimal assignment schedule:				
	A B C D				
	I 5 7 15 12				
	II 8 3 9 10				
	II 4 14 2 5				
1.4	IV 6 3 1 14				
14.	(a) State and prove Marriage Theorem.				
	(b) Let n be a positive integer. Show that if $(1+x)^n$ is expended as a sum of powers on n, the				
	coefficient of x^r is $\binom{n}{r}$.				
	SECTION E – K6 (CO5)				
	Answer any ONE of the following in 250 words (1 x 20 = 20)				
15.	(a) If a football league of n teams, each team plays each other twice. The number of games played is therefore 2C. where C is the number of ways choosing two objects from n given objects. Prove				

		that $C = (n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$ and deduce the number of games played in	1
a		a league of 22 teams.	
		(b) Explain ordered selection and evaluate the following: (i) $p(7,4)$, (ii) $p(9,5)$	
	16.	(a) Suppose that a_1 and a_2 are given, then $a_n = Aa_{n-1} + Ba_{n-2}$, $(n \ge 3)$, holds. Then prove the following:	
		(i) if the roots α, β of the equation $x^2 = Ax + B$ are distinct, then $a_n = k_1 \alpha^n + k_2 \beta^n$, where the constants k_1, k_2 are determined uniquely by a_1 and a_2 .	
		(ii) if $x^2 = Ax + B$ has repeated root α , then $a_n = (k_1 + nk_2)\alpha^n$	
		(b) Given a chessboard C , choose any square of C and let D denote the board obtained by deleting	
		from C every square in the same row or column at the chosen square (including the chosen square	
		itself). Let E denote the board obtained from C by deleting only the chosen square. Then prove	
		that $R(x,C) = xR(x,D) + R(x,E)$.	

\$\$\$\$\$\$\$